
MEM30007A

Select common engineering materials

First Published April 2013

This work is copyright. Any inquiries about the use of this material should be directed to the publisher.

Edition 1 – April 2013

Conditions of Use:

Unit Resource Manual

Manufacturing Skills Australia Courses

This Student's Manual has been developed by BlackLine Design for use in the Manufacturing Skills Australia Courses.

All rights reserved. No part of this publication may be printed or transmitted in any form by any means without the explicit permission of the writer.

Statutory copyright restrictions apply to this material in digital and hard copy format.

Copyright \bigcirc BlackLine Design 2013

Feedback:

Your feedback is essential for improving the quality of these manuals.

Please advise the appropriate industry specialist of any changes, additions, deletions or anything else you believe would improve the quality of this Student Workbook. Don't assume that someone else will do it. Your comments can be made by photocopying the relevant pages and including your comments or suggestions.

Forward your comments to:

BlackLine Design blakline@bigpond.net.au Sydney, NSW 2000

Aims of the Competency Unit:

This unit covers recognising common materials used in engineering, assisting in the selection of a material for a specific application, and using test results to evaluate the properties of materials.

Unit Hours:

36 Hours

Prerequisites:

Elements and Performance Criteria

- Identify common 1.1 engineering materials by their principal properties
 Identify common 1.1 materials by their principal properties
 The principal properties of ferrous and non-ferrous metals are identified. The principal properties of thermosetting and thermoplastic polymers are identified
 - 1.3 The principal properties of ceramics and composite materials are identified.
 - 1.4 The effects of different types of bonding in materials are identified.
 - 1.5 The effects of mechanical and thermal processes on the principal properties of materials are identified.
- 2. Select materials 2 for specific applications
- aterials 2.1 The engineering requirement for the specific application is determined in consultation with others.
 - 2.2 Material is selected based on the requirement and consideration of principal properties and further processing.
 - 2.3 Selection is confirmed according to standard operating procedures.
- 3. Verify selected 3.1 material as fit for purpose 3.2
- 1 Appropriate tests for the required properties are identified.
 - 3.2 Testing of materials is arranged with appropriate persons, if necessary.
 - 3.3 Test results are analysed and material choices are confirmed or modified as appropriate.

Required Skills and Knowledge

Required skills include:

- undertaking research
- selecting/carrying out tests appropriate to the material
- communicating
- documenting
- planning and sequencing operations
- reading, interpreting and following information on written job instructions, specifications, standard operating procedures, charts, lists, drawings and other applicable reference documents

Required knowledge includes:

- classification of materials:
 - metals and non-metals
 - ferrous and non-ferrous metals
 - polymers (thermoplastics, thermosetting and elastomers)
 - ceramics
 - composite materials
- structure of materials
- physical properties of materials:
 - electrical conductivity/resistivity
 - specific gravity/density
 - thermal conductivity/expansion
 - specific heat
 - melting/boiling points
 - magnetic properties
- optical properties
- mechanical properties:
 - strength yield, tensile, compressive
 - stress/strain data
 - hardness
 - toughness (impact and slow strain)
 - elasticity
 - plasticity
 - ductility
 - malleability
 - fatigue
 - creep
- chemical properties:
 - corrosion of metals, corrosion processes, mechanisms
 - degradation of polymers
 - materials testing methods destructive testing and applications:
 - tensile
 - compressive
 - shear
 - torsion
 - hardness
 - impact
 - fatigue
 - creep
 - visual
 - corrosion testing

- engineering materials
- engineering applications of ferrous metals:
 - cast irons
 - carbon and alloy steels
 - stainless steels
- engineering applications of non-ferrous metals:
 - aluminium and its alloys
 - copper, brass and bronze
 - nickel alloys, zinc, titanium
 - magnesium
 - refractory metals
- engineering applications of polymers:
 - thermosetting polymers
 - thermoplastic polymers
 - ceramics and glasses
- effects of mechanical and thermal processes on the properties of materials:
 - casting
 - forging, rolling and extrusion
 - cold forming
 - powder processes
 - heat treatment
 - joining fasteners
 - soldering
 - brazing
 - welding
 - adhesives
 - finishing coatings, metallic and non-metallic
- hazards and control measure associated with selecting common engineering materials, including housekeeping
- safe work practices and procedures

Lesson Program:

Topic	Review Questions	
Topic 1 – Properties of Materials:	MEM30007-RQ-01	
Topic 2 – Properties Data:	MEM30007-RQ-02	
Topic 3 – Materials Testing:	MEM30007-RQ-03	
Topic 4 – Structure and Properties:	MEM30007-RQ-04	
Topic 5 – Processing of Materials:	MEM30007-RQ-05	
Topic 6 – Selection of Materials:	MEM30007-RQ-06	
Topic 7 – Safety Parameters:	MEM30007-RQ-07	

Unit hour unit and is divided into the following program.

Contents:

Conte	
(Conditions of Use:
1	Unit Resource Manual
	Manufacturing Skills Australia Courses
	Feedback:
	Aims of the Competency Unit:
	Unit Hours:
	Prerequisites:
	Elements and Performance Criteria
	Required Skills and Knowledge
	Lesson Program:
	Contents:
	Terminology:
Materia	als:
	Engineering Metals:
	Engineering Polymers :
	Engineering Ceramics:
Topic 1	- Properties of Materials:
	Required Skills:
1	Required Knowledge:
	Introduction to Selection of Materials:
	Properties of materials
	Mechanical Properties:
	Strength:
	Stiffness:
	Ductility or Brittleness:
	Toughness:
	Hardness:
	Electrical Properties:
- 22	Thermal Properties:
1	Physical Properties:
	Chemical Properties:
	The Range of Materials:
	Metals:
	Polymers and Elastomers:
	Ceramics and Glasses:
	Composites:
1	Costs:
	Review Problems:
	2 - Properties Data:
	Required Skills:
	Required Knowledge: 44
	Standards:
	Data Sources:
	Coding Systems:
	Steel:
	Stainless Steel:
	Aluminium:
	Copper:
	Plastics:
	Timber
	Alloy Steel:
	Data Analysis:
1	Review Problems:

Topic 3 – Materials Testing:	
Required Skills:	
Required Knowledge:	
Standard Tests:	
The Tensile Test:	56
The Test Piece:	
Validity of Tensile Test Data:	
Interpreting Tensile Test Data:	
Tensile Tests for Plastics:	
Bend Tests:	61
Impact Tests:	62
Izod V-Notch Test Pieces:	
Charpy V-Notch Test Pieces:	~ .
Impact Test Results:	64
Interpreting Impact Test Results:	CE.
Hardness Tests:	
The Brinell Hardness Test:	05
The Vickers Hardness Test:	
The Rockwell Hardness Test:	
Comparison of the Different Hardness Scales:	
The Moh Scale of Hardness:	
Hardness Values:	-
Review Problems:	70
Topic 4 - Structure and Properties:	73
Required Skills:	
Required Knowledge:	
Structure of Metals:	
Crystals:	
Crystalline Structure:	
Alloys:	76
Ferrous Alloys:	
Plain Carbon Steel:	
Non-Ferrous Alloys:	87
Cold Working:	
Heat Treating Cold-Worked Metals:	05
Hot Working:	89
The Structure of Polymers:	
Additives:	
Thermoplastics:	90
Examples of Thermoplastics:	
Thermosets:	96
Elastomers:	98
The Structure of Composites:	99
Fibres in a Matrix:	101
Review Problems:	
	100
Topic 5 – Processing of Materials:	.05
Required Skills:	
Required Knowledge:	105
Shaping Metals:	105
Casting:	
Manipulative processes:	
Powder Techniques:	

Shaping Polymers: Flowing Processes: Manipulative Processes: Drawing of Polymers: Heat Treatment of Metals: Surface Hardening:	
Integrated Circuit Fabrication:	
Topic 6 – Selection of Materials:	
Required Skills:	
Required Knowledge:	
Requirements:	
Stages in the selection process	
Costs:	
Failure in Service:	
The causes of Failure:	
Examination of Failures:	
Selection of Materials:	
Car Bodywork:	122
Tennis Racket:	123
Small Components for Toys:	124
Review Problems:	
Topic 7 – Safety Parameters:	
Required Skills:	
Required Knowledge:	
Health and safety at work	
Employer's Responsibilities	
Employee's Responsibilities:	
Government Responsibilities:	
Trade Union Responsibilities:	
Designers, Manufacturers, Importers and Suppliers Responsibilities.	
Industry Association Responsibilities:	129
Safe Work Systems:	
Protective Clothing and Equipment:	130
Accidents and Emergencies:	130
A Safe and Healthy Environment:	
Review Problems:	
Contraction of the second	1000
Answers:	
<i>Topic 1:</i>	
Topic 2:	
Topic 3:	
Topic 4:	
Topic 5:	
Topic 6:	
<i>Topic 7:</i>	

Terminology

Terminology:

Additives Plastics and rubbers almost invariably contain, in addition to the polymer or polymers, other materials, i.e. Additives. These are added to modify the properties and cost of the material This term is used to describe a change in properties that occurs with Ageing certain metals due to precipitation occurring, there being no change in chemical composition A metal which is a mixture of two or more elements. Alloy An amorphous material is a non-crystalline material, i.e. It has a Amorphous structure which is not orderly This involves heating to and holding at a temperature which is high Annealing enough for recrystallization to occur and which results in a softened state for a material after a suitable rate of cooling, generally slowly. The purpose of annealing can be to facilitate cold working, improve machinability and mechanical properties, etc. Describes the process, generally with aluminium, whereby a Anodizing protective coating is produced on the surface of the metal by converting it to an oxide. Austenite Describes the structure of a face-centred cubic iron crystalline structure which has carbon atoms in the gaps in the face-centred iron. Bend, angle of The results of a bend test on a material are specified in terms of the angle through which the material can be bent without breaking. The greater the angle, the more ductile the material. The Brinell number is the number given to a material as a result of a Brinell number Brinell test and is a measure of the hardness of a material. The larger the number, the harder the material. Brittle failure With brittle failure a crack is initiated and propagates prior to any significant plastic deformation. The fracture surface of a metal with a brittle fracture is bright and granular due to the reflection of light from individual crystal surfaces. With polymeric materials the fracture surface may be smooth and glassy or somewhat splintered and irregular. Brittle material A brittle material shows little plastic deformation before fracture. The material used for a china teacup is brittle. Thus because there is little plastic reformation before breaking, a broken teacup can be stuck back together again to give the cup the same size and shape as the original. A treatment which results in a hard surface layer being produced Carburizing with ferrous alloys. The treatment involves heating the alloy in a carbon-rich atmosphere so that carbon diffuses into the surface layers, then quenching to convert the surface layers to martensite. Case hardening The term is used to describe processes in which, by changing the composition of surface layers of ferrous alloys, a hardened surface layer can be produced.

Materials:

Engineering Metals:

The following is an alphabetical listing of metals, each being listed according to the main alloying element, with their key characteristics. It is not a comprehensive list of all metallic elements, just those commonly encountered in engineering.

Aluminium

Used in commercially pure form and alloyed with copper, manganese, silicon, magnesium, t i n and zinc. Alloys exist in two groups; casting alloys and wrought alloys. Some alloys can be heat treated. Aluminium and its alloys have a low density, high electrical and thermal conductivity and excellent corrosion resistance. Tensile strength tends to be of the order of 150 to 400 MPa with the tensile modulus about 70 GPa; there is a high strength-to-weight ratio.

Chromium

Chromium is mainly used as an alloying element in stainless steels, heat-resistant alloys and high-strength alloy steels. It is generally used in these for the corrosion and oxidation resistance it confers on the alloys.

Cobalt

Cobalt is widely used as an alloy for magnets, typically 5-35% cobalt with 14-30% nickel and 6-13% aluminium. Cobalt is also used for alloys which have high strength and hardness at room and high temperatures; these are often referred to as Stellates. Cobalt is also used as an alloying element in steels.

Copper

Copper is very widely used in the commercially pure form and alloyed in the form of brasses, bronzes, cupro-nickels and nickel silvers. Brasses are copper-zinc alloys containing up to 43% zinc. Bronzes are copper-tin alloys. Copper-aluminium alloys are referred to as aluminium bronzes, copper-silicon alloys as silicon bronzes. Copper-beryllium alloys as beryllium bronzes. Cupro-nickels are copper-nickel alloys. Copper and its alloys have good corrosion resistance, high electrical and thermal conductivity, good machinability, can be joined by soldering, brazing and welding, and generally have good properties at low temperatures. The alloys have tensile strengths ranging from about 180 to 300 MPa and a tensile modulus about 20 to 28 GPa.

Gold

Gold is very ductile and readily cold worked. It has good electrical and thermal conductivity.

Iron

The term ferrous alloy is used for the alloys of iron; these alloys include carbon steels, cast irons, alloy steels and stainless steels. Steels have 0.05-2% carbon, cast irons 2 - 4.3% carbon. The term carbon steel is used for those steels in which essentially just iron and carbon are present. Steels with between 0.10% and 0.25% are termed mild steels, between 0.20% and 0.50% medium-carbon steels and 0.50-2% carbon as high-carbon steels. With such steels in the annealed state the tensile strength increases from about 250 MPa at low carbon content to 900 MPa at high carbon content, the higher the carbon content, the more brittle the alloy. The term low-alloy steel is used for alloy steels when the alloying additions are less than 2%, medium-alloy between 2% and 10% and high-alloy when over 10%. I n all cases the carbon content is less that 1%. Examples of low-alloy steels are manganese steels with strengths of the order of 500 MPa in the annealed state and 700 MPa when quenched and tempered. Stainless steels are high-alloy steels with more than 12% chromium. The modulus of elasticity of steels tends to be about 200 to 207 GPa.

Engineering Polymers :

The following is an alphabetical listing of the main polymers used in engineering, together with brief notes of their main characteristics.

Acrylonitrile-butadiene-styrene (ABS)

ABS is a thermoplastic polymer giving a range of opaque materials with good impact resistance, ductility and moderate tensile (17 to 58 MPa) and compressive strength. It has a reasonable tensile modulus (1.4 to 3.1 GPa) and hence stiffness, with good chemical resistance.

Acetal

Acetals (polyacetals), are thermoplastics with properties and applications similar to those of nylons. A high tensile strength (70 MPa) is retained in a wide range of environments; they have a high tensile modulus (3.6 GPa) and hence stiffness, high impact resistance and a low coefficient of friction. Ultraviolet radiation causes surface damage.

Acrylics

Acrylics are transparent thermoplastics, trade names for such materials including Perspex and Plexiglass; they have high tensile strength (50 to 70 MPa) and tensile modulus (2.7 to 3.5 GPa), hence stiffness, good impact resistance and chemical resistance, but a large thermal expansivity.

Butadiene-Acrylonitrile

This is an elastomer, generally referred to as nitrile or Buna-N rubber CNBR). I t has excellent resistance to fuels and oils.

Butadiene-Styrene

Butadiene-styrene is an elastomer and is very widely used as a replacement for natural rubber because of its cheapness. It has good wear and weather resistance, good tensile strength, but poor resilience, poor fatigue strength and low resistance to fuels and oils.

Butyl

Buty (isobutene-isoprene copolymer) is an elastomer. It is extremely impermeable to gases.

Cellulosics

The term Cellulosics encompasses cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cellulose nitrate and ethyl cellulose. All are thermoplastics. Cellulose acetate is a transparent material.; additives are required to improve toughness and heat resistance. Cellulose acetate butyrate is similar to cellulose acetate but less temperature sensitive and with a greater impact strength. It has a tensile strength of 18 to 48 MPa and a tensile modulus of 0.5 to 1.4 GPa. Cellulose nitrate colours and becomes brittle on exposure to sunlight. It also bums rapidly. Ethyl cellulose is tough and has low flammability.

Chlorosulphonated Polyethylene

Chlorosulphonated Polyethylene is an elastomer having excellent resistance to ozone with good chemical resistance, fatigue and impact properties.

Epoxies

Epoxy resins are, when cured, thermosets; they are frequently used with glass fibres to form composites. Such composites have high strength, of the order of 200 to 420 MPa, and stiffness, about 21 to 25 GPa.

Ethylene propylene

Ethylene propylene is an elastomer. The copolymer form, EPM , and the terpolymer form, EPDM , have very high resistance to oxygen, ozone and heat.

Ethylene vinyl acetate

Ethylene vinyl acetate is an elastomer which has good flexibility, impact strength and electrical insulation properties.

Engineering Ceramics:

The term ceramics covers a wide range of materials and here only a few of the more commonly used engineering ceramics are considered.

Alumina

Alumina, i.e. aluminium oxide, is a ceramic which finds a wide variety of uses. It has excellent electrical insulation properties and resistance to hostile environments. Combined with silica it is used as refractory bricks.

Boron

Boron fibres are used as reinforcement in composites with materials such as nickel.

Boron Nitride

Boron nitride is a ceramic and is used as an electric insulator.

Carbides

A major use of ceramics is, when bonded with a metal binder to form a composite material, as cemented tips for tools. These are generally referred to as bonded carbides, the ceramics used being generally carbides of chromium, tantalum, titanium and tungsten.

Chromium Carbide See *Carbides*.

Chromium Oxide

Chromium oxide is a ceramic and is used as a wear-resistant coating.

Glass

The basic ingredient of most glasses is silica, a ceramic. Glasses tend to have low ductility, a tensile strength which is markedly affected by microscopic defects and surface scratches, low thermal expansivity and conductivity (and hence poor resistance to thermal shock), good resistance to chemicals and good electrical insulation properties. Glass fibres are frequently used in composites with polymeric materials.

Kaolinite

Kaolinite is ceramic is a mixture of aluminium and silicon oxides, being a clay.

Magnesia

Magnesia, i.e. magnesium oxide, is a ceramic and is used to produce a brick called a dolomite refractory.

Pyrex

Pyrex is is a heat-resistant glass, being made with silica, limestone and boric oxide. See *Glasses.*

Silica

Silica forms the basis of a large variety of ceramics. It is, for example, combined with alumina to form refractory bricks and with magnesium ions to form asbestos. It is the basis of most glasses.

Silicon nitride

Silicon nitride is a ceramic is used as the fibre in reinforced materials such as epoxies.

Soda glass

Soda glass is the common window glass, being made from a mixture of silica, limestone and soda ash. See *Glasses*.

Tantalum Carbide See Carbides.

Titanium Carbide See Carbides.

Tungsten carbide See Carbides

Topic 1 – Properties of Materials:

Required Skills:

On completion of the session, the participants will be able to:

- Recognise the link between the selection of materials for a product and the properties required of them by the product.
- Communicate in appropriate technical terms about the properties of materials.
- Recognise the properties characteristic of different groups of materials.

Required Knowledge:

- Processing formulae.
- Reading tables and charts.

Introduction to Selection of Materials:

The selection of a material for a component to be manufactured is as important as the design. The selection of a suitable material must be carefully thought out; information on the use of the component, working environment, wear, force and stress loading, aesthetics, compatibility of adjoining materials (galvanic corrosion) and financial constraints.

Material selection is a step in the process of designing any physical object. In the context of product design, the main goal of material selection is to minimize cost while meeting product performance goals. Systematic selection of the best material for a given application begins with properties and costs of candidate materials. For example, a thermal blanket must have poor thermal conductivity in order to minimize heat transfer for a given temperature difference.

Systematic selection for applications requiring multiple criteria is more complex. For example, a rod which should be stiff and light requires a material with high Young's modulus and low density. If the rod will be pulled in tension, the specific modulus, or modulus divided by density will determine the best material; because a plate's bending stiffness scales as its thickness cubed, the best material for a stiff and light plate is determined by the *cube root* of stiffness divided by density.

Question – What materials are used for a container of soft drink?

Answer – Soft drinks are manufactured in aluminium cans, glass or plastic bottles.

Question – What makes these materials suitable and others not?

Answer – In order to answer this question we need to investigate the properties of other materials.

Points to be considered in the selection of a material could be:

- Rigidity the container does not stretch or become floppy under the content's weight.
- Strength the container can stand the weight of the contents.
- Resistance to chemical attack from the contents.
- Retention of the gas component prevent the gas from escaping through the container walls.
- Low density so the container is not too heavy.
- Cost effectiveness profit.
- Ease of manufacture increases the profit.

The selection of a suitable material involves balancing a number of different specifications and making a choice of the material.

One of the best ways to collect research on materials is to carry out tests/experiments that will reflect their use in projects. For example, if the materials require for a project will need to be hardwearing, a test could be devised and tried out using several possible materials. The findings would be filed using a range of materials and mark/grade for each according to their resistance.

A range of tests could be devised to assess waterproof properties, impact resistance, flexibility rigidity, and many more.

The Rich Picture in Figure 1.1 shows the wide range of facts and issues relating to materials research that need to be considered when designing a product; this type of presentation could be the first page of materials research for a design project.



Figure 1.1

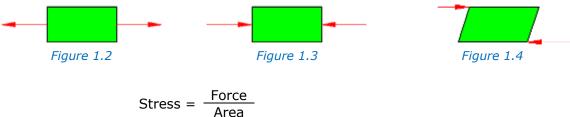
The selection of a material from which a product can be manufactured depends on a number of factors; these are often grouped under three main headings, namely:

- 1. The requirements imposed by the conditions under which the product is used, i.e. the service requirements; therefore, if a product is to be subject to forces then it might need strength, if subject to a corrosive environment then it might require corrosion resistance.
- 2. The requirements imposed by the methods proposed for the manufacture of the product. For example, if a material has to be bent as part of its processing, it must be ductile enough to be bent without breaking. A brittle material such as cast iron could not be used.
- 3. Cost.

Properties of materials

Materials selection for a product is based upon a consideration of the properties required including:

- 1. Mechanical properties –displayed when a force is applied to a material and include strength, stiffness, hardness, toughness and ductility.
- 2. Electrical properties –seen when the material is used in electrical circuits or components and include resistivity, conductivity and resistance to electrical breakdown.


- 3. Magnetic properties relevant when the material is used as a magnet or part of an electrical component such as an inductor which relies on such properties.
- 4. Thermal properties displayed when there is a heat input to a material and include expansivity and heat capacity.
- 5. Physical properties the properties which are characteristic of a material and determined by its nature, including density, colour, surface texture.
- 6. Chemical properties relevant in considerations of corrosion and solvent resistance.

The properties of materials are often changed markedly by the treatments they undergo; for example, steels can have their properties changed by heat treatment, such as annealing, which involves heating to some temperature and slowly cooling or quenching, i.e. heating and then immersing the material in cold water. Steel can also have its properties changed by working, for example, if a piece of carbon steel is permanently deform, it will have different mechanical properties from those existing before that deformation; refer to Error! Reference source not found. for more information.

Mechanical Properties:

The mechanical properties are about the behaviour of materials when subject to forces. When a material is subject to external forces, then internal forces are set up in the materials which oppose the external forces. The material can be considered to be similar to a spring. A spring, when stretched by external forces, sets up internal opposing forces which are readily apparent when the spring is released and they force it to contract. When a material is subject to external forces which stretch it then it is in tension (Figure 1.2); when a material is subject to forces which squeeze it then it is in compression (Figure 1.3). If a material is subject to forces which cause it to twist or one face to slide relative to an opposite face then it is said to be in *shear* (Figure 1.4).

In discussing the application of forces to materials an important aspect is often not so much the size of the force as the force applied per unit area; thus, for example, if a strip of material is stretched by a force F applied over its cross-sectional area A, then the force applied per unit area is *F*/*A*. The term *stress* is used for the force per unit area.

Stress has the units of pascal (Pa), with 1 Pa being a force of 1 newton per square metre, i.e. 1 Pa = 1 N/m². The stress is said to be direct stress when the area being stressed is at right angles to the line of action of the external forces, as when the material is in tension or compression. Shear stresses are not direct stresses since the forces being applied are in the same plane as the area being stressed. The area used in calculations of the stress is generally the original area that existed before the application of the forces. The stress is thus sometimes referred to as the engineering stress, the term true stress being used for the force divided by the actual area existing in the stressed state.

When a material is subject to tensile or compressive forces it changes in length. The formula to determine strain is:

Since strain is a ratio of two lengths it has no units. Thus we might, for example, have a strain of 0.01. This would indicate that the change in length is $0.01 \times \text{the original length}$. However, strain is frequently expressed as a percentage.

Strain as a %=
$$\frac{\text{Change in Length}}{\text{Original Length}} \times 100$$

Therefore, the strain of 0.01 as a percentage is 1%, i.e. this is when the change in length is 1% of the original length.

Example:

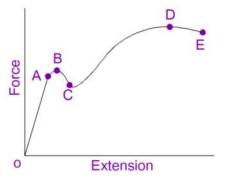
A strip of material has a length of 50 mm. When it is subject to tensile forces it increases in length by 0.020 mm. What is the strain? The strain is the change in length divided by the original length:

Strain =
$$\frac{0.020}{50}$$
 = 0.0004

Expressed as a percentage, the strain is:

Strain =
$$\frac{0.020}{50} \times 100 = 0.04\%$$

Strength:


In materials science, the strength of a material is its ability to withstand an applied stress without failure. The field of strength of materials deals with loads, deformations and the forces acting on a material. A load applied to a mechanical member will induce internal forces within the member called stresses. The stresses acting on the material cause deformation of the material. Deformation of the material is called strain, while the intensity of the internal forces is called stress. The applied stress may be tensile, compressive, or shear. The strength of any material relies on three different types of analytical method: strength, stiffness and stability, where strength refers to the load carrying capacity, stiffness refers to the deformation or elongation, and stability refers to the ability to maintain its initial configuration. Material yield strength refers to the point on the engineering stress-strain curve (as opposed to true stress-strain curve) beyond which the material experiences deformations that will not be completely reversed upon removal of the loading. The ultimate strength refers to the point on the engineering stress-strain curve corresponding to the stress that produces fracture.

The compressive strength and shear strength are defined in a similar way. The unit of strength is the pascal (Pa), with 1 Pa being 1 N/m². Strengths are often millions of pascals and so the MPa is often used, 1 MPa being 106 Pa or 1 million Pa.

Often it is not the strength of a material that is important in determining the situations in which a material can be used but the value of the stress at which the material begins to yield. If gradually increasing tensile forces are applied to, say, a strip of mild steel then initially when the forces are released the material springs back to its original shape. The material is said to be *elastic*. If measurements are made of the extension at different forces and a graph plotted, then the extension is found to be proportional to the force and the material is said to obey *Hooke's law*. However, when a particular level of force is reached the material stops springing back completely to its original shape and is then said to show some plastic behaviour. This point coincides with the point on a force-extension graph at which the graph stops being a straight line graph, the so-called limit of proportionality.

Figure 1.5 – Force Extension Graph shows the type of force-extension graph which would be given by a sample of mild steel. The limit of proportionality is point A. Up to this point Hooke's law is obeyed and the material shows elastic behaviour, beyond it shows a mixture of elastic and plastic behaviour. Dividing the forces by the initial cross-sectional area of the sample and the extensions by the original length converts the force-

extension data into a stress-strain graph, as in Figure 1.6 – Stress Strain Graph. The stress at which the material starts to behave in a non-elastic manner is called the elastic limit. Generally at almost the same stress the material begins to stretch without any further increase in force and is said to have yielded. The term yield stress is used for the stress at which this occurs; for some materials, such as mild steel, there are two yield points, termed the upper and the lower yield points. A carbon steel typically might have a tensile strength of 600 MPa and a yield stress of 300 MPa.

Upper Yield Strength Tensile Strength Lower Yield Strength Limit of Proportionality O Strain Figure 1.6 – Stress Strain Graph

Figure 1.5 – Force Extension Graph

Where:

- A = Limit of Proportionality
- B = Upper Yield Point
- C = Lower Yield Point
- D = Maximum Force
- E = Breaking Point

In some materials, such as aluminium alloys, the yield stress is not so easily identified as with mild steel and the term proof stress is used as a measure of when yielding begins; this is the stress at which the material has departed from the straight-line force-extension relationship by some specified amount. The 0.1% proof stress is defined as that stress which results in a 0.1% offset, i.e. the stress given by a line drawn on the stress-strain graph parallel to the linear part of the graph and passing through the 0.1% strain value, as in Figure 1.7 – Determination of Proof Stress. A 0.2% proof stress is likewise defined as that stress which results in a 0.2% offset.

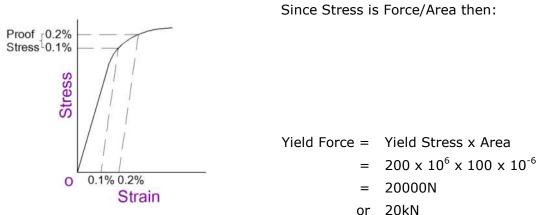


Figure 1.7 – Determination of Proof Stress

Example:

Samples are taken of cast aluminium alloys and give the following data. Which is the strongest in tension?

LM4 tensile strength 140 MPa LM6 tensile strength 160 MPa LM9 tensile strength 170 MPa MEM30007A - Select common engineering materials

Materials

The strongest in tension is the one with the highest tensile strength and is LM9.

Stiffness:

The stiffness of a material is the ability of a material to resist bending; when a strip of material is bent, one surface is stretched and the opposite face is compressed, as illustrated in Figure 1.8.

The more a material bends, the greater is the amount by which the stretched surface extends and the compressed surface contracts. Therefore, a stiff material would be one that undergoes a small change in length when subject to such forces; this means a small strain when subject to such stress and so a small value of strain/stress, or conversely a large value of stress/strain. For most materials a graph of stress against strain gives initially a straightline relationship, as illustrated in Figure 1.9. Thus a large value of stress/strain means a steep slope of the stress-strain graph. The quantity stress/strain when we are concerned with the straight-line part of the stress-strain graph is called the modulus of elasticity (or sometimes Young's modulus).

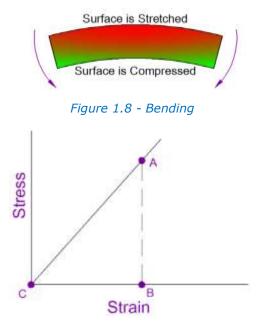


Figure 1.9 – Modulus of Elasticity = AB/BC

Modulus of Elasticity= <u>Stress</u> Strain

The units of the modulus are the same as those of stress, since strain has no units. Engineering materials frequently have a modulus of the order of 1000 million Pa, i.e. 10^9 Pa; this is generally expressed as GPa, with 1 GPa = 10^9 Pa. Typical values are about

Pa; this is generally expressed as GPa, with 1 GPa = 10^9 Pa. Typical values are about 200 GPa for steels and about 70 GPa for aluminium alloys. A stiff material therefore has a high modulus of elasticity. Consequently steels are stiffer than aluminium alloys; for most engineering materials the modulus of elasticity is the same in tension as in compression.

Example:

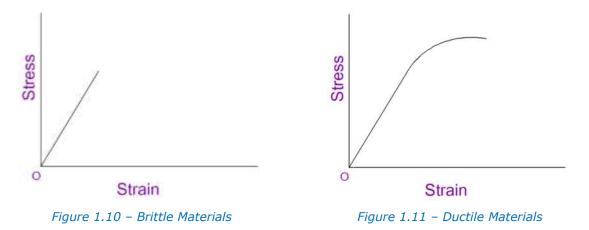
If a material of a component has a tensile modulus of elasticity of 200 GPa, what strain will be produced by a stress of 4 MPa?

Since the modulus of elasticity is stress/strain then:

 $Strain = \frac{Stress}{Modulus} = \frac{4 \times 10^6}{200 \times 10^9} = 0.00002$

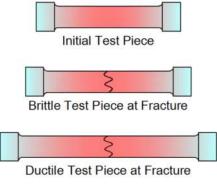
Example:

Which of the following plastics is the stiffest?


ABS	Tensile Modulus 2.5 GPa
Polycarbonate	Tensile Modulus 2.8 GPa
Polypropylene	Tensile Modulus 1.3 GPa
PVC	Tensile Modulus 3.1 GPa

The stiffest plastic is the one with the highest tensile modulus and therefore is the PVC.

Ductility or Brittleness:


When a glass is dropped and breaks then it is possible (but not probable) to stick all the pieces together again and restore the glass to its original shape. The glass is said to be a **brittle** material.

Using the previous example of a soft drink container, if a steel or aluminium can is dropped, the can is less likely to shatter like a glass bottle but more likely to show permanent deformation in the form of dents. The material has shown plastic deformation which the term **permanent deformation** is used to changes in dimensions which are not removed when the forces applied to the material are taken away. Materials which develop significant permanent deformation before they break are called **ductile.** Figure 1.10 and Figure 1.11 show the types of stress-strain graphs given by brittle and ductile materials, the ductile one indicating a considerable extent of plastic behaviour.

A measure of the ductility of a material is obtained by determining the length of a test piece of the material, then stretching it until it breaks and then, by putting the pieces together, measuring the final length of the test piece, as illustrated in Figure 1.8. A brittle material will show little change in length from that of the original test piece, but a ductile material will indicate a significant increase in length. The measure of the ductility is then the **percentage elongation**.

A reasonably ductile material, such as mild steel, will have an elongation of about 20%, or more. A brittle material, such as a cast iron, will have an elongation of less than 1%

Figure 1.12 – Test Pieces after Fracture

Example

A material has an elongation of 10%. By how much longer will be a strip of the material of initial length 200 mm when it breaks? The percentage elongation can be expressed as

% elongation = Change in Length Original Length x 100

Therfore

Changes in Length = $\frac{10 \times 200}{100}$ = 20 mm

Example

Which of the following materials is the most ductile?

80-20 brass % elongation 50% 70-30 brass % elongation 70%

60-40 brass % elongation 40%

The most ductile material is the one with the largest percentage elongation, therefore the 70-30 brass.

Toughness:

A tough material can be considered to be one that resists breaking meaning that a tough material requires more energy to break it than a less tough one. There are, however, a number of measures that are used for toughness. Consider a length of material being stretched by tensile forces; when it is stretched by an amount as a result of a constant force F_1 then the work done is:

Work = Force (F) x extension (y) Work = $F_1 y_1$

Therefore, if a force-extension graph is considered as shown in Figure 1.13, the work done when a very small extension is considered, is the area of that strip under the graph. The total work done in stretching a material to an extension y_1 , i.e. through an extension which we can consider to be made up of a number of small extensions, is thus:

Work =
$$F_1 y_1 + F_2 y_2 + F_3 y_3 + \dots$$

and so is the area under the graph up to x.

Since stress = force/area and strain - extension/length then:

Work = (stress X area) X (strain X length)

Since the product of the area and length is the volume of the material, then:

Work/volume = stress X strain

Thus the work done in stretching a material unit volume to a particular strain is the sum of the work involved in stretching the material to each of the strains up to this strain.

The area under a force-extension graph up to the breaking point is thus a measure of the energy required to break the material. The area under the stress-strain graph up to the breaking point is a measure of the energy required to break a unit volume of the material. A large area is given by a material with a large yield stress and high ductility (see Figure 1.10 and Figure 1.11). Such materials can thus be considered to be tough.

Figure 1.13

An alternative way of considering toughness is the ability of a material to withstand shock loads. A measure of this ability to withstand suddenly applied forces is obtained by impact tests, such as the Charpy and Izod tests (refer to **Error! Reference source not found.**). In these tests, a test piece is struck a sudden blow and the energy needed to break it is measured. The results are thus expressed in units of energy, i.e. joules (J). A brittle material will require less energy to break it than a ductile one. The results of such tests are often used as a measure of the brittleness of materials.

Materials

Another measure of toughness that can be used is fracture toughness. Fracture toughness can be defined as a measure of the ability of a material to resist the propagation of a crack. The toughness is determined by loading a sample of the material which contains a deliberately introduced crack of length 2c and recording the tensile stress a at which the crack propagates. The fracture toughness, symbol K_c and usual units MPa m^{1/2}, is given by:

 $K_{c} = \sigma \sqrt{\pi c}$

The smaller the value of the toughness, the more readily a crack propagates. The value of the toughness depends on the thickness of the material, high values occurring for thin sheets and decreasing with increasing thickness to become almost constant in thick sheets. For this reason, a value called the plane strain fracture toughness K_{Ic} is often quoted; this is the value of the toughness that would be obtained with thick sheets. Typical values are of the order of 1 MPa m^{1/2} for glass, which readily fractures when there is a crack present, to values of the order of 50 to 150 MPa m^{1/2} for some steels and copper alloys. In such materials cracks do not readily propagate.

Hardness:

The hardness of a material is a measure of its resistance to abrasion or indentation. A number of scales are used for hardness, depending on the method that has been used for measuring. The hardness of a material is a measure of how resistant solid matter is to various kinds of permanent shape change when a force is applied. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, there are different measurements of hardness: scratch hardness, indentation hardness, and rebound hardness.

The hardness is roughly related to the tensile strength of a material, the tensile strength being roughly proportional to the hardness (refer to **Error! Reference source not found.**); therefore, the higher the hardness of a material, the higher is likely to be the tensile strength.

Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity.

Common examples of hard matter are ceramics, concrete, certain metals, and superhard materials, which can be contrasted with soft matter.

Electrical Properties:

The electrical **resistivity** (p) is a measure of the electrical resistance of a material, being defined by the equation:

$$\mathsf{P} = \frac{\mathsf{R}\mathsf{A}}{\mathsf{L}}$$

where R is the resistance of a length L of the material of cross-sectional area A. The unit of resistivity is the ohm metre. An electrical insulator such as a ceramic will have a very high resistivity, typically of the order of $10^{10} \Omega$ m or higher. An electrical conductor such as copper will have a very low resistivity, typically of the order of $10^{10} \Omega$ m.

The electrical conductance of a length of material is the reciprocal of its resistance and has the unit of Q^{-1} ; this unit is given a special name of siemens (S). The electrical conductivity (a) is the reciprocal of the resistivity:

$$\Omega = \frac{1}{\Omega} = \frac{L}{RA}$$

The unit of conductivity is thus Ω^{-1} m or S m⁻¹. Since conductivity is the reciprocal of the resistivity, an electrical insulator will have a very low conductivity, of the order of 10^{-10} S/m, while an electrical conductor will have a very high one, of the order of 10^8 S/m.

The dielectric strength is a measure of the highest voltage that an insulating material can withstand without electrical breakdown. It is defined as:

Dielectric Strength Breakdown Voltage Insulator Thickness

The units of dielectric strength are volts per metre. Polythene has a dielectric strength of about 4×10^7 V/m; this means that a 1 mm thickness of polythene will require a voltage of about 40 000 V across it before it will break down.

Example

An electrical capacitor is to be made with a sheet of polythene of thickness 0.1 mm between the capacitor plates. Determine the greatest voltage that can be connected between the capacitor plates if there is not to be electrical breakdown? Take the dielectric strength to be 4×10^7 V/m. The dielectric strength is defined as the breakdown voltage divided by the insulator thickness, hence:

Breakdown Voltage = Dielectric Strength x Thickness = $4 \times 10^7 \times 0.1 \times 10^{-3}$ = 4000 V

Thermal Properties:

The SI unit of temperature is the kelvin with a temperature change of 1 K being the same as a change of 1°C. The kelvin is a unit of measurement for temperature. It is one of the seven base units in the International System of Units (SI) and is assigned the unit symbol K. The Kelvin scale is an absolute, thermodynamic temperature scale using as its null point absolute zero, the temperature at which all thermal motion ceases in the classical description of thermodynamics. The kelvin is defined as the fraction $\frac{1}{273.16}$ of the thermodynamic temperature of the triple point of water (exactly 0.01 °C or 32.018 °F).

The linear expansivity (a) or coefficient of linear expansion is a measure of the amount by which a length of material will expand when the temperature increases and is defined as:

$$\alpha = \frac{\text{Change in Length}}{\text{Original Length x Change in}}$$
Temperature

It has the unit of K^{-1} .

The specific heat capacity (c) is a measure of the amount of heat needed to raise the temperature of the material. It is defined as:

$$c = \frac{Amount of Heat}{Mass x Change in Temperature}$$

C has the unit of J kg⁻¹ K⁻¹. Weight-for-weight metals require less heat to reach a particular temperature than plastics. This is because metals have smaller specific heat capacities. For example, copper has a specific heat capacity of about 340 J kg⁻¹ K⁻¹ while polythene is about 1800 J kg⁻¹ K⁻¹.

The thermal conductivity of a material is a measure of its ability to conduct heat. There will only be a net flow of heat energy through a length of material when there is a difference in temperature between the ends of the material. Thus the thermal conductivity is defined in terms of the quantity of heat that will flow per second through a temperature gradient.

$$\lambda = \frac{\text{Quantity of Heat/Second}}{\text{Temperature Gradient}}$$

 λ has the unit of W m⁻¹ K⁻¹. A high thermal conductivity means a good conductor of heat. Metals tend to be good conductors. For example, copper has a thermal conductivity of about 400 W m⁻¹ K⁻¹. Materials which are poor conductors of heat have low thermal conductivities. For example, plastics have thermal conductivities of the order of 0.03 W m⁻¹ K⁻¹.

Example

A designer of domestic pans requires a material for a handle which would enable a hot pan to be picked up with comfort, the handle not getting hot. What quantity should he or she look for in tables in order to find a suitable material?

What is required is a material with a low thermal conductivity, probably a small fraction of a $W m^{-1} K^{-1}$.

Physical Properties:

Physical properties are those that can be observed without changing the identity of the substance. The general properties of matter such as colour, density, hardness, are examples of physical properties. Properties that describe how a substance changes into a completely different substance are called chemical properties. Flammability and corrosion/oxidation resistance are examples of chemical properties.

The density (p) of a material is the mass per unit volume.

It has the unit of kg/m³. It is often an important property that is required in addition to a mechanical property; thus, for example, an aircraft undercarriage is required to be not only strong but also of low mass. Therefore, what is required is as high a strength as possible with as low a density as possible, i.e. a high value of strength/density; this quantity is often referred to as the specific strength. Steels tend to have specific

strengths of the order of 50 to 100 MPa/Mg m⁻³ (note: 1 Mg is 10^6 g or 1000 kg), magnesium alloys about 140 MPa/Mkg m⁻³ and titanium alloys about 250 MPa/Mkg m⁻³. For example, a lower-strength magnesium alloy would be preferred to a higher-strength, but higher-density, steel.

Chemical Properties:

Chemical and physical properties may often be tabulated together in most handbooks. In general, the data associated with a compound contain name, empirical and structural formula, molecular weight, Chemical Abstract (CA) registry number, melting point, boiling point, density, color, solubility, oxidation or reduction potential, and various spectroscopic peaks. However, other literature must be consulted on chemical reactivity.

Chemical reactions usually involve the breakage and formation of some chemical bonds. All chemical reactions involve the redistribution of electrons among species involved. Chemical properties show the nature of its reactivity, the type of compounds and the category of reactions. Think of a compound, and classify it according to the following criteria.

Attack on materials by the environment in which they are situated is a major problem. The rusting of iron is an obvious example. Tables are often used giving the comparative resistance to attack of materials in various environments, e.g. in aerated water, in salt water, to strong acids, to strong alkalis, to organic solvents, to ultraviolet radiation. Thus, for example, in a salt water environment carbon steels are rated at having very poor resistance to attack, aluminium alloys good resistance and stainless steels excellent resistance.

The Range of Materials:

Materials are usually classified into four main groups, these being metals, polymers and elastomers, ceramics and glasses, and composites. The following is a brief comparison, in general, of the properties of these main groups. Differences in the internal structure of the groups are discussed in **Error! Reference source not found.**

Property	Metals	Polymers	Ceramics
Density (Mg m ⁻³)	2 - 16	1 - 2	2 - 17
Melting Point (°C)	200 - 3500	70 – 200	2000 - 4000
Thermal Conductivity	High	Low	Medium
Thermal Expansion	Medium	High	Low
Specific Heat Capacity	Low	Medium	High
Electrical Conductivity	High	Very Low	Very Low
Tensile Strength (MPa)	100 - 2500	30 - 300	40 - 400
Tensile Modulus (GPa)	40 - 400	0.7 – 3.5	150 - 450
Hardness	Medium	Low	High
Resistance to Corrosion	Medium – Poor	Good – Medium	Good

Note: 1 Mg $m^{-1} = 1000 kg m^{-3}$

Figure 2. 1.1 – Range of Properties

<u>Metals:</u>

Engineering metals are generally alloys. The term alloy is used for metallic materials formed by mixing two or more elements. For example, mild steel is an alloy of iron and carbon, stainless steel is an alloy of iron for adding elements to the iron is to improve

the iron's properties. Pure metals are very weak materials. The carbon improves the strength of the iron. The presence of the chromium in the stainless steel improves the corrosion resistance.

The properties of any metal are affected by the treatment it has received and the temperature at which it is being used. Thus heat treatment, working and interaction with the environment can all change the properties. In general, metals have high electrical and thermal conductivities, can be ductile and thus permit products to be made by being bent into shape, and have a relatively high modulus of elasticity and tensile strength.

Polymers and Elastomers:

Thermoplastics soften when heated and become hard again when the heat is removed. The term implies that the material becomes plastic when heat is applied. Thermosets do not soften when heated, but char and decompose; therefore thermoplastic materials can be heated and bent to form required shapes, while thermosets cannot. Thermoplastic materials are generally flexible and relatively soft. Polythene is an example of a thermoplastic, being widely used in the forms of films or sheet for such items as bags, squeeze bottles, and wire and cable insulation. Thermosets are rigid and hard. The popular phenol formaldehyde used in the past was known as Bakelite but has largely been replaced by PP (polypropylene) and PE (polythene) in the modern industry; Bakelite is a thermoset and was widely used for electrical plug casings, door knobs and handles.

The term elastomers is used for polymers which by their structure allow considerable extensions that are reversible. The material used to make rubber bands is an obvious example of such a material.

All thermoplastics, thermosets and elastomers have low electrical conductivity and low thermal conductivity, hence their use for electrical and thermal insulation. Compared with metals, they have lower densities and higher coefficients of expansion, are generally more corrosion resistant, have a lower modulus of elasticity, tensile strengths which are nearly as high as metals, are not as hard, and give larger elastic deflections. When loaded they tend to creep, i.e. the extension gradually changes with time; their properties depend very much on the temperature so that a polymer which may be tough and flexible at room temperature may be brittle at 0°C and creep at a very high rate at 100°C.

Ceramics and Glasses:

Ceramics and glasses tend to be brittle, have a relatively high modulus of elasticity, are stronger in compression than in tension, are hard, chemically inert, and have low electrical conductivity. Glass is just a particular form of ceramic, with ceramics being crystalline and glasses non-crystalline. Examples of ceramics and glasses abound in the home in the form of cups, plates and glasses. Alumina, silicon carbide, cement and concrete are examples of ceramics; because of their hardness and abrasion resistance, ceramics are widely used for the cutting edges of tools.

Composites:

Composites are materials composed of two different materials bonded together in such a way that one serves as the matrix and surrounds the fibres or particles of the other. There are composites involving glass fibres or particles in polymers, ceramic particles in metals (referred to as cermets) and steel rods in concrete (referred to as reinforced concrete). Timber is a natural composite consisting of tubes of cellulose in a natural polymer called lignin.

Composites are able to combine the good properties of other types of materials while avoiding some of their drawbacks. Composites can be made low density, with strength and a high modulus of elasticity; however, they generally tend to be more expensive to produce.

Costs:

These can be considered in relation to the basic costs of the raw materials, the costs of manufacturing and the life and maintenance costs of the finished product.

Comparison of the basic costs of materials is often on the basis of the cost per unit weight or cost per unit volume; for example, if the cost of 10 kg of a metal is, say, \$15 then the cost per kg is \$1.50. f the metal has a density of 8000 kg/m³ then 10 kg will have a volume of $10/8000 = 0.00125 \text{ m}^3$ and so the cost per cubic metre is 1.5/0.00125 = \$1200. The formulae to determine the cost per m³ can be written as:

Cost per $m^3 = (Cost per Kilogram) \times Density$

However, often a more important comparison is on the basis of per unit strength or cost per unit stiffness for the same volume of material; this enables the cost of, say, a beam to be considered in terms of what it will cost to have a beam of a certain strength or stiffness. Hence if, for comparison purposes, a beam of volume 1 m^3 is considered then if the tensile strength of the above material is 500 MPa, the cost per MPa of strength will be 1200/500 = \$2.40. The formulae to determine the same volume is:

Cost per unit strength = $\frac{(Cost/m^3)}{Strength}$

and similarly

Cost per unit strength = $\frac{(Cost/m^3)}{Stiffness}$

The costs of manufacturing will depend on the processes used. Some processes require a large capital outlay and then can be employed to produce large numbers of the product at a relatively low cost per item. Others may have little in the way of setting-up costs but a large cost per unit product. The cost of maintaining a material during its life can often be a significant factor in the selection of materials. A feature common to many metals is the need for a surface coating to protect them from corrosion by the atmosphere. The rusting of steels is an obvious example of this and dictates the need for such activities as the continuous repainting of the Sydney Harbour Bridge.

Figure 1.14

In Figure 1.14 above, the main supporting arch is showing clear signs of rust and needs immediate descaling and repainting.

Example

On the basis of the following data, compare the costs per unit strength of the two materials for the same volume of material.

Low-carbon Steel: Cost per kg \$1.00, density 7800 kg/m³, strength 1000 MPa

Aluminium Alloy (Mn): Cost per kg \$2.20, density 2700 kg/m³, strength 200MPa

For the steel, the volume of 1 kg is $1/7800 = 0.00013 \text{ m}^3$ and so the cost per m³ is 1/0.00013 = \$7692. The cost per MPa of strength is thus 7692/1000 = \$7.69. For the aluminium alloy, the volume of 1 kg is $1/2700 = 0.00037 \text{ m}^3$ and so the cost per m³ is 02.2/0.00037 = \$5946; therefore, although the cost per kg is greater than that of the steel, because of the lower density the cost per cubic metre is less. The cost per MPa of strength is 5946/200 = \$29.73. On a comparison on the strengths of equal volumes, it is cheaper to use the steel where \$7.69 < \$29.73.

Review Problems:

MEM30007-RQ-01

- 1. What types of properties would be required for the following products?
 - (a) A domestic kitchen sink.
 - (b) A shelf on a bookcase.
 - (c) A cup.
 - (d) An electrical cable.
 - (e) A coin.
 - (f) A car axle.
 - (g) The casing of a telephone.
- 2. For each of the products listed in problem 1, identify a material that is commonly used and explain why its properties justify its choice for that purpose.
- 3. Which properties of a material would you need to consider if you required materials which were:
 - (a) Stiff,
 - (b) Capable of being bent into a fixed shape.
 - (c) Capable of not fracturing when small cracks are present.
 - (d) Not easily broken.
 - (e) Acting as an electrical insulator.
 - (f) A good conductor of heat.
 - (g) Capable of being used as the lining for a tank storing acid.
- 4. A colleague informs you that a material has a high tensile strength with a low percentage elongation. Explain how you would expect the material to behave.
- 5. A colleague informs you that a material has a high tensile modulus of elasticity and good fracture toughness. Explain how you would expect the material to behave.
- 6. What is the tensile stress acting on a strip of material of cross-sectional area 50 $\rm mm^2$ when subject to tensile forces of 1000 N?
- 7. Tensile forces act on a rod of length 300 mm and cause it to extend by 2 mm. What is the strain?
- 8. An aluminium alloy has a tensile strength of 200 MPa. What force is needed to break a bar of this material with a cross-sectional area of 250mm²?
- 9. A test piece of a material is measured as having a length of 100 mm before any forces are applied to it. After being subject to tensile forces it breaks and the broken pieces are found to have a combined length of 112 mm. What is the percentage elongation?
- 10. A material has a yield stress of 250 MPa. What tensile forces will be needed to cause yielding i f the material has a cross-sectional area of 200 mm²?
- 11. A sample of high tensile brass is quoted as having a tensile strength of 480 MPa and an elongation of 20%. An aluminium-bronze is quoted as having a tensile strength of 600 MPa and an elongation of 25%. Explain the significance of these data in relation to the mechanical behaviour of the materials.
- 12. A grey cast iron is quoted as having a tensile strength of 150 MPa, a compressive strength of 600 MPa and an elongation of 0.6%. Explain the significance of the data in relation to the mechanical behaviour of the material.
- 13. A sample of carbon steel is found to have an impact energy of 120 J at temperatures above 0°C and 5 J below it. What is the significance of these data?
- 14. Mild steel is quoted as having an electrical resistivity of 1.6×10^{-7} . Is it a good conductor of electricity?

- 15. A colleague states that he needs a material with a high electrical conductivity. Electrical resistivity tables for materials are available. What types of resistivity values would you suggest he looks for?
- 16. Aluminium has a resistivity of 2.5 x 10-8 Ω m. What will be the resistance of an aluminium wire with a length of 1 m and a cross-sectional area of 2 mm²?
- 17. How do the properties of thermoplastics differ from those of thermosets?
- 18. You read in a textbook that "Designing with ceramics presents problems that do not occur with metals because of the almost complete absence of ductility with ceramics". Explain the significance of the comment in relation to the exposure of ceramics to forces.
- Compare the specific strengths, and costs per unit strength for equal volumes, for the materials giving the following data: Low-carbon steel: Cost per kg \$0.10, density 7800 kg/m³, strength 1000 MPa Polypropylene: Cost per kg \$0.20, density 900 kg/m³, strength 30 MPa.